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Abstract

Speech-driven 3D facial animation is a challenging001
problem plagued by ill-posed data that is increasingly ex-002
pensive to generate and sparse. Most existing works do003
not attempt to fix this and instead focus on model-based004
changes which, in recent years, have seen great improve-005
ments. In this work, we alternatively explore how 2D sig-006
nals can be used to augment existing speech-driven 3D fa-007
cial animation techniques to address the issues the afore-008
mentioned issues. We first present a pseudo-labeling tech-009
nique for generating 3D animation data from 2D videos and010
introduce 3D-MEAD, a 3D version of the popular MEAD011
[39] dataset. We also present a novel 2D photometric loss012
based on techniques used in facial reconstruction to better013
align 3D facial animations in 2D space and introduce use-014
ful regularization. We finally argue against the conventional015
one-hot encoding for speaker style conditioning and intro-016
duce improved speaker embeddings that can be used in a017
zero-shot manner. We demonstrate how these contributions018
garner as high as 9.0% improvements over existing state-019
of-the-art and present further directions for future work.020

1. Introduction021

Building speech-driven generative models that can produce022
high-fidelity 3D animations is an important problem within023
AI that has broad applications to fields such as gaming,024
virtual reality, film production, and online communication.025
In recent years, manually labeled datasets such as VO-026
CASET [3] and BIWI [16] have accelerated the develop-027
ment of models such as VOCA [3], FaceFormer [15], and028
CodeTalker [42], which have produced increasingly better029
animations. Despite these advancements, this field still is030
encumbered by two problems: First, labeled datasets such031
as VOCASET and BIWI are extremely costly to obtain, re-032
quiring expensive and cumbersome motion capture equip-033
ment. Second, the mapping of speech (audio) signals to034
high-dimensional 3D data (facial meshes) is an ambiguous035
one-to-many problem — where one speech input can map036
to more than one compatible animation or style (e.g. varia-037

tions in emotion, expression, etc.) — which can often lead 038
to unexpressive and low-fidelity animations due to an aver- 039
aging of motions. 040

In this paper, we aim to take steps toward addressing the 041
aforementioned issues and explore how 2D signals can be 042
used to augment the 3D task of speech-driven facial anima- 043
tion. To that end, we explore various independent studies 044
and propose a data generation technique, improved speaker 045
style embeddings, and a new photometric loss, and explore 046
how these components can be used to augment the perfor- 047
mance of existing state-of-the-art models. For this purpose, 048
we employ the previous state-of-the-art models FaceFormer 049
and CodeTalker, and show that when augmented with our 050
techniques, we can achieve higher-fidelity animations. 051

Specifically, we develop and demonstrate a method for 052
reconstructing 3D facial animations from 2D videos. We 053
apply this method on the popular MEAD [39] dataset and 054
build 3D-MEAD. This technique obviates the need for ex- 055
pensive motion-capturing software, and we show how this 056
additional data can be used to augment existing training 057
pipelines and improve performance. Using this augmented 058
data, we are able to achieve state-of-the-art results in a joint 059
training setting. 060

An issue with current models in speech-driven 3D facial 061
animation is that they are encumbered by one-hot speaker 062
style embeddings, and the choice of speaker ID in evalua- 063
tion can greatly affect performance. This limits the ability 064
of models to generalize to unseen speakers and makes the 065
choice of speaker ID very important when applying these 066
models in practice. To address this issue, we extended 067
the current state-of-the-art models, namely FaceFormer and 068
CodeTalker, to use learned speaker embeddings, which en- 069
able them to be trained on an arbitrary number of speakers 070
and be used in inference with new, unseen speakers. We 071
further demonstrate how these new models outperform their 072
one-hot encoding counterparts. 073

Finally, in addition to augmenting data, we also inves- 074
tigate how inverse rendering techniques can be used to de- 075
velop a 2D photometric loss to better align the 3D facial an- 076
imations in 2D, a novel contribution to this field. As these 077
models will ultimately be used to generate 2D animations 078

1



CVPR
#10034

CVPR
#10034

CVPR 2024 Submission #10034. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

for user consumption, alignment in 2D is important. We079
show how models trained with this loss perform better, pro-080
ducing higher-fidelity animations.081

The contributions of this work are as follows.082

• A new 3D dataset (3D-MEAD) 1, that is generated from083
2D videos, obviating the need for expensive and cumber-084
some motion capture equipment.085

• A novel joint training method that utilizes the combina-086
tion of high-quality, motion-captured data (VOCASET)087
and pseudo-generated data (3D-MEAD).088

• A 2D photometric loss using inverse rendering to better089
align animations in 2D image space.090

• Improved learned speaker embeddings that better capture091
the nuances of speech for improved style conditioning.092

2. Related Work093

The methods developed in this work relate to several other094
research fields, namely 3D facial reconstruction and speech-095
driven 3D facial animation. As an aside, many existing096
works in speech-driven 2D facial animation (talking heads)097
exist [1, 5–7, 10, 20, 22, 23, 27, 29, 31, 32, 34, 38, 40] how-098
ever, we do not cover them in detail here.. The primary099
difference between 2D talking heads and 3D approaches is100
that, although both will ultimately be rendered to video, 2D101
approaches cannot be integrated into game engines or any102
other 3D virtual or metaverse environment. We review rel-103
evant works as follows.104

2.1. 3D Reconstruction From 2D Videos105

Many single-view 3D face reconstructions methods exist106
[4, 9, 12, 17, 19, 26, 43, 46], relying on classifiers with107
ResNet [21] backbones to predict the parameters of a 3D108
morphable model, pose, texture and displacement maps,109
and camera information. Recently, methods using syn-110
thetic datasets have been explored [4, 12], resulting in im-111
proved facial alignment. Aside from classifiers, other ap-112
proaches rely on using a 3D model prior, photometric con-113
sistency losses, and sparse keypoints [36, 47]. More recent114
work [41] introduces a two-stage approach with denser key115
points. Our approach to 3D reconstruction from 2D videos116
builds off this work. The primary concerns with all these117
methods are (a) the models themselves present a bottleneck118
in that they can only process high-level features to predict119
the face alignment, and (b) they rely on manually defined120
key points and cannot do per-vertex deformations. In our121
facial reconstruction method used to generate 3D-MEAD,122
we explore dense face tracking that does not rely on pre-123
defined key points.124

1This dataset will be made publicly available

2.2. Speech-driven 3D facial animation. 125

Although many earlier methods [11, 13, 14, 24, 37] focus- 126
ing on predefined facial rigs and rules exist, we focus on 127
data-driven approaches here. VOCA [8] casts 3D facial 128
animation as a regression problem and employs audio fea- 129
ture extraction models to better map from speech to ani- 130
mation. They also propose the popular VOCASET dataset, 131
generated using motion capture equipment, and capture 12 132
unique speakers. MeshTalk [33] proposes a method for de- 133
coupling audio-correlated and audio-uncorrelated informa- 134
tion. FaceFormer [15] proposes a transformer-based ap- 135
proach with a pretrained Wav2Vec2.0 [2] audio encoder to 136
better model the long-term dependencies of speech, lead- 137
ing to greater fidelity. CodeTalker [42] builds from Face- 138
Former and casts the problem as a code query task with 139
a similar transformer backbone. Similar to VOCA and 140
FaceFormer, CodeTalker uses one-hot encodings during 141
training for speaker-style conditioning. Our proposed im- 142
proved learned speaker embeddings contrasts this method 143
by being able to adapt to new, unseen speakers, in a zero- 144
shot manner. Imitator [35] proposes a pre-trained style- 145
agnostic transformer, which is subsequently optimized for 146
speaker-specific styling based on short reference videos. 147
Imitator also proposes a lip contact loss which guides the 148
model to emphasize lip closure towards the end of a sen- 149
tence. Although they don’t use one-hot encodings, their 150
method still requires short training videos to properly con- 151
dition on a new speaker. Recently, [44] proposed a cross- 152
modal semi-supervised framework, learning a common la- 153
tent space from speech and image domains, learning to map 154
speech to image, and finally transforming those images into 155
meshes. They show promising zero-shot performance on 156
VOCASET. This work primarily differs from ours in that 157
we predict meshes in an end-to-end manner, and our dataset 158
generation method only requires videos without artist inter- 159
vention. 160

3. Methodology 161

3.1. Problem Formulation 162

We formulate the problem of speech-driven 3D facial an- 163
imation as a sequence-to-sequence (seq2seq) problem as 164
in FaceFormer [15]. See Fig. 1 for a visual. Given 165
speech signal X and ground truth vertex positions Γ1:T = 166
{υ1, . . . , υT }, υt ∈ RV×3, where V is the number of ver- 167
tices in the face mesh and T is the number of frames in 168
the sequence, the goal is to translate X into a sequence 169
of vertex positions Γ̂1:T that matches Γ1:T as closely as 170
possible. In practice, Γ1:T is the change in vertex posi- 171
tions, the vertex offsets, rather than the absolute position, 172
from a given template mesh h ∈ RV×3. This reframing 173
of the problem both normalizes the data and enables train- 174
ing a model that can animate any given template mesh as 175
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Figure 1. The data flow through the generalized model architecture of our 3D speech-drive facial animation methods. The primary
difference between the FaceFormer and CodeTalker backbone, as visualized here, is that CodeTalker’s Transformer decoder predicts motion
codes that are fed to the codebook decoder, while FaceFormer directly predicts vertex offsets. To augment these baslines, We propose three
methods visualized here: first, we introduce a 2D photometric loss to regularize mesh predictions. Second, we use a pre-trained speaker
recognition model to generate speaker embeddings (Wav2Vec Speaker Embeddings), replacing the traditional one-hot encoding. Third, we
train our model using an augmented dataset (3D-MEAD) jointly with the original dataset (VOCASET).

H1:T = {υ1 + h, . . . , υT + h}.176
In addition to the speech signal, the model conditions on177

a speaker style vector used to represent speaker identities178
SX ∈ RDS . This style vector usually takes the form of a179
one-hot vector, where DS is the number of speakers, how-180
ever, it can be any vector used to represent a speaker and the181
specific audio input. We can then formally define a model182
Φ, that maps input speech to vertex offsets, as183

υ̂t = Φθ(υ̂1:t−1,SX ,X ) (1)184

where θ is the model parameters and υ̂t ∈ Γ̂1:T ; t ∈ [T ]185

3.2. Generating Data from 2D Videos186

Conventionally, 3D facial animation datasets like VO-187
CASET and BIWI require expensive and cumbersome mo-188
tion capture equipment, making generating such data very189
time-consuming and expensive. As a result, existing works190
[3, 15, 42, 44] have been restricted to these two datasets. To191
alleviate this issue, we propose a new, cost-effective method192
for generating 3D facial animation data from 2D videos.193

Given a 2D video sequence I = {ι1, . . . , ιT }, ιt ∈194
RW×H , we employ an in-house dense-landmark predic-195
tion model to generate ground-truth facial mesh sequences196
Γ∗
1:T = {υ∗

1 , . . . , υ
∗
T }. This model is similar to [41] and we197

train it on the Facescape [43] dataset.198
We apply our in-house dense-landmark prediction model199

to the popular audio-visual dataset for emotional talking-200
faces, MEAD [39] and generate 3D-MEAD. MEAD is201
a multi-view talking-face video corpus with 43 English202

speakers, speaking 40 unique sequences with 8 different 203
emotions. For the purposes of this work, similar to VO- 204
CASET and BIWI, we focus only on the neutral emotion. 205
We split training, validation, and testing sets into 27, 8, 206
and 8 speakers, yielding 1080, 320, and 320 animation se- 207
quences, respectively. We also generate a training subset of 208
only 8 speakers from the same set of 27 speakers for cer- 209
tain studies. In all subsets, there is an equal (when possible) 210
split of female and male speakers. 211

3.3. Speech-driven 3D Facial Animation 212

In our experiments, we employ FaceFormer [15] and 213
CodeTalker [42] as our two transformer-based backbone 214
models. We briefly describe both models below, but defer 215
to the original papers for greater detail. 216

3.3.1 Models 217

Both FaceFormer and CodeTalker use transformer decoders 218
to predict vertex offsets to produce animations (see Fig. 1 219
for an illustration of the data flow). Both models can be 220
generalized to four primary components: (1) an audio en- 221
coder, (2) a style embedding layer, (3) a vertex embedding 222
layer, and (4) a transformer-based vertex decoder. The pri- 223
mary difference between the two is that while FaceFormer 224
predicts vertex offsets for each vertex in the mesh in an end- 225
to-end manner, CodeTalker breaks the problem into two 226
stages: First, a codebook of motion primitives is learned us- 227
ing a variational autoencoder on the target dataset. Second, 228
with the codebook and its decoder frozen, the transformer 229
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Figure 2. Input videos and corresponding 3D facial mesh recon-
structions for our method applied on 3D-MEAD.

decoder learns to predict the motion codes of the codebook230
in order to generate vertex offsets. Both models share simi-231
lar performance, with CodeTalker having a slight edge, and232
we show in Sec. 4 how both models can be augmented in233
different ways to improve on that performance.234

Audio encoder: To encode speech inputs X , we use235
the Wav2Vec 2.0 [2] model. Wav2Vec 2.0 is a gener-236
alized model that features an audio feature extractor and237
transformer-based encoder. The audio feature extractor is238
composed of temporal convolutions networks (TCN) and239
processes raw waveform into feature vectors that the en-240
coder converts to contextualized speech representations.241
Wav2Vec’s output is resampled to match the sampling fre-242
quency (16 kHz) of both datasets used in this work. As in243
previous works [15, 42], during training, the TCN and en-244
coder are initialized and frozen with pretrained Wav2Vec245
2.0 weights, and a randomly initialized linear projection246
layer is added on top.247

Embedding layers. Both the style embedding layer and248
vertex embedding layer are linear layers, with a feature size249
of 64. CodeTalker originally explored a feature size of250
1000, however, we found experimentally that results were251
better with a feature size of 64, as originally proposed by252
FaceFormer.253

Vertex Decoder. The transformer-based vertex decoder254
is equipped with causal self-attention and cross-modal at-255
tention. The causal self-attention is used to learn inter-256
frame dependencies conditioned on the past motion se-257
quences, while the cross-modal attention aligns audio and258
motion modalities. Formally, the recursive process of the259
decoder can be defined as260

υ̂t = Dcross-model(Espeech(X ),SX , υ̂1:t−1) (2) 261

where Espeech denotes the audio encoder and Dcross-modal is 262
the cross-modal motion decoder. 263

3.3.2 Improved Speaker Style Embeddings 264

Previous methods [3, 8, 15, 42] conditioned on speaker- 265
styles using one-hot encodings for speaker identification. A 266
learnable linear layer in the network decoder is then used to 267
map this encoding into style feature vector ZX ∈ R64. This 268
method has two primary drawbacks. First, the model has no 269
way of conditioning on speakers not seen during training. 270
This has the added drawback of forcing the user to choose a 271
speaker code during inference, which can greatly affect the 272
performance of the model. Second, this learned style em- 273
bedding is fixed and does not have the capability to reflect 274
the nuances of the current input audio signal, such as emo- 275
tion, volume, pace, etc., all of which can greatly affect the 276
final animation. 277

To address these issues, we propose to map speaker 278
styles to a common feature space using the input speech 279
signal directly rather than a one-hot encoding. That is, 280
given X , we wish to extract a latent code A(S) = WX us- 281
ing a learned audio encoder A(S) that better represents the 282
speaker as well as the nuances of their speech. As before, 283
a learnable linear layer is then used to map this latent code 284
into style feature vector ZX ∈ R64. 285

Our requirements for A are that the extracted latent code 286
should (1) isolate unique speakers while (2) simultane- 287
ously relating types of speech (emotion, pace, volume). To 288
achieve this, we make use of Wav2Vec 2.0 [2] fine-tuned 289
on the SUPERB Speaker Identification Task [45] which uti- 290
lizes the VoxCeleb1 dataset [30]. We show a t-SNE plot 291
of speaker embeddings speakers and emotions from VO- 292
CASET and MEAD in Fig. 3. This figure demonstrates 293
how those requirements are met, separating speakers while 294
also relating styles of speech — in this case emotions — 295
together. We show in Sec. 4 how this new speaker style em- 296
bedding garners greater expressiveness and performance. 297

3.4. Training Objectives 298

Mean Squared Error (MSE) Loss. The primary training 299
objective is the MSE between predicted and ground truth 300
decoder outputs (vertex offsets). Formally, this is defined as 301

LMSE(Γ̂1:T ,Γ1:T ) = ∥ ˆΓ1:T − Γ1:T ∥22 302

where 303

∥ ˆΓ1:T − Γ1:T ∥22 =

T∑
t=1

V∑
n=1

∥ υ̂t,n − υt,n ∥2 (3) 304
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(a) VOCASET (b) MEAD (c) MEAD Emotions

Figure 3. T-SNE plots of Wav2Vec 2.0 speaker embeddings for (a) all 12 speakers in VOCASET, (b) 12 random MEAD speakers, and
(c) various emotion-labeled speeches for a randomly selected speaker in the MEAD dataset. These plots demonstrate how these speaker
embeddings are able to separate speaker identities and sufficiently differentiate emotions within the same speaker.

where V is the number of 3D vertices in the set of vertex305
offsets (i.e. υt ∈ RV×3).306

FaceFormer-based models are trained without teacher307
forcing, guided by the MSE loss (LMSE) between the pre-308
dicted sequence Γ̂1:T and the ground truth Γ1:T , while309
CodeTalker-based models are trained with teacher forcing,310
guided by same predicted sequence MSE (LMSE) loss as311
well as an MSE loss between the predicted motion se-312
quences features ZΓ1:T

and their quantized features Zq
Γ1:T

313
from the CodeTalker codebook. This additional loss is in-314
troduced as a regularization method to the network and was315
shown to improve performance. We defer to [42] for more316
details.317

2D photometric loss. We introduce the constraint of318
training with a photometric loss (LPHO), similar to DECA319
[18]. Specifically, for each predicted frame υ̂t in the pre-320
dicted sequence, we inverse render the corresponding mesh321
into an W × H sized image Ît. Similarly, we inverse ren-322
der the corresponding ground truth frames υt into It. Given323
this sequence of images, the photometric loss computes the324
error between these images as325

LPHO =

T∑
t=1

∥ VI ⊙ (Ît − It) ∥1,1, (4)326

where VI is a mask that removes the background to isolate327
the face, and ⊙ is the Hadamard product. Occluding the328
background in this manner is important to focus on the fa-329
cial features and not dilute the changes between prediction330
and ground truth. The aim of this loss is to introduce ad-331
ditional regularization and ensure that the rendered predic-332
tions align with the rendered ground truth.333

Final losses. For FaceFormer baselines,334

LFaceFormer = αΓLMSE(Γ̂1:T ,Γ1:T ) (5)335

with αΓ = 1 to match the original implementation. For 336
CodeTalker baselines, 337

LCodeTalker =αΓLMSE(Γ̂1:T ,Γ1:T ) + 338

αZLMSE(ZΓ1:T
,Zq

Γ1:T
) (6) 339

with αΓ = αZ = 1 to match the original implementation. 340
Finally, when training with photometric loss, 341

L2D
FaceFormer = αΓLMSE(Γ̂1:T ,Γ1:T ) + α2DLPHO (7) 342

with αΓ = 1 and α2D = 1× 10−7, and 343

L2D
CodeTalker =αΓLMSE(Γ̂1:T ,Γ1:T ) + 344

αZLMSE(Ẑ,Z) + α2DLPHO (8) 345

with αΓ = αZ = 1 and α2D = 1 × 10−7. We explain the 346
loss weights in greater detail in Sec. 4. 347

4. Experiments 348

Datasets. We utilize the popular VOCASET [8] to train 349
and test different methods in our experiments, as well as 350
the 3D-MEAD dataset introduced in Sec. 3.2. Both con- 351
tain 3D facial animations paired with English utterances. 352
VOCASET contains 255 unique sentences, which are par- 353
tially shared among different speakers, yielding 480 an- 354
imation sequences from 12 unique speakers. Those 12 355
speakers are split into 8 unique training, 2 unique valida- 356
tion, and 2 unique testing speakers. Each sequence is cap- 357
tured at 60 fps, resamples to 30 fps, and ranges between 3 358
and 4 seconds. We use the same training, validation, and 359
testing splits as VOCA and FaceFormer, which we simi- 360
larly refer to as VOCA-Train, VOCA-Val, and VOCA-Test. 361
For 3D-MEAD, there are 43 unique speakers, where each 362
speaker has 40 unique sequences, yielding a total of 1680 363
sequences. We randomly split the dataset into 27, 8, and 8 364
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Model Best LVE (×10−5 mm) ↓ % imp.

FaceFormer 3.194 —
CodeTalker 3.137 —
FaceFormer2D 3.102 +1.1%
FaceFormerW2V 2.940 +6.2%
CodeTalkerW2V 3.050 +2.8%
CodeTalkerJoint 2.854 +9.0%

Table 1. A comparison of our models on the VOCA-Test dataset
w.r.t. the Best LVE (Lip Vertex Error). ”Best” refers to the best
tested model from the three seeds used to train the same model.
Each% improvement is measured based on a comparison with the
best baseline model (CodeTalker).

training, validation, and test speakers. We refer to each split365
as 3D-MEAD-Train, 3D-MEAD-Val, 3D-MEAD-Test. We366
additionally subsample 3D-MEAD-Train to generate a 3D-367
MEAD-Train-8 dataset containing only 8 training speakers,368
similar to VOCASET-Train. In both datasets, face meshes369
are composed of 5023 vertices.370

Hyper-parameters. We replicate the experimental set-371
tings proposed in FaceFormer [15], using the Adam [25]372
optimizer with a learning rate η = 1 × 10−4, batch size of373
1, and period set to 30. Where necessary, the audio encoder374
weights are initialized with the pre-trained Wav2Vec 2.0 [2]375
weights. Each model is trained for 100 epochs and tested376
using the final weights after 100. A full hyper-parameter377
breakdown can be found in Appendix A378

Multiple seeds. Unlike other works, we train each379
experiment three times using the same fixed seeds of380
[0, 420, 666] and report the average. We found early on that381
good performance is often heavily dependent on the ran-382
dom seed used during training and SOTA can be achieved383
by cherry-picking the right seed. Therefore, we report both384
the average and best-performing models for a more accu-385
rate comparison to baselines. We subsequently discuss the386
results of seed choice and argue for a change in how future387
works should report performance.388

Baselines. We compare our methods against the two389
state-of-the-art models FaceFormer and CodeTalker. As390
done in their respective original works, for testing on un-391
seen subjects, we condition FaceFormer and CodeTalker on392
all training speakers and average their results.393

Measuring performance. Following previous works,394
we report quantitative performance using the Lip Vertex395
Error (LVE) to measure lip synchronization with ground396
truth. As far as we know, this is the only widely used metric397
for this task. LVE calculates the mean over all frames of the398
maximal L2 error of all lip vertices. As previous works do399
not explicitly define this metric, we do so here as follows.400
For a single frame in the nth predicted test sample sequence401

Model Mean LVE (×10−5 mm) ↓ % imp.

FaceFormer 3.252 ± 0.050 —
CodeTalker 3.312 ± 0.281 —
FaceFormer2D 3.172 ± 0.097 +2.4%
FaceFormerW2V 3.056 ± 0.158 +6.0%
CodeTalkerW2V 3.084 ± 0.033 +5.2%
CodeTalkerJoint 3.012 ± 0.159 +7.4%

Table 2. A comparison of our models on the VOCA-Test dataset
w.r.t. Mean LVE. Mean is calculated as the average testing results
over the three seeds used to train each model. % improvement
is measured based on a comparison with the best mean baseline
model (FaceFormer).

ˆυn,t ∈ [Γ̂n
1:T ], the maximal L2 error of lip vertices Vlips is 402

ℓlip2 (υ̂t) = max
v∈Vlips

[
3∑

i=1

(υv,i − υ̂v,i)2

]
. (9) 403

The LVE for the entire test set of predicted sequences 404
{Γ̂1

1:T , . . . , Γ̂
N
1:T } is then 405

LV E =
1

N ∗ T

N∑
n=1

T∑
t=1

ℓlip2 (υ̂n,t) (10) 406

4.1. Photometric Loss Experiment 407

Our first experiment involves augmenting the baseline mod- 408
els (with one-hot speaker style encodings) with the pho- 409
tometric loss proposed in Sec. 3.4. That is, we train and 410
test FaceFormer2D and CodeTalker2D using L2D

FaceFormer and 411
L2D

CodeTalker, respectively. Experimentally, MSE loss gener- 412
ally ranges on the order of magnitude of 1 × 10−7, while 413
photometric losses generally range on the order of magni- 414
tude of 1 × 101. As the photometric loss is meant to regu- 415
larize the network and not drown out the MSE loss, we use 416
an α2D of 1e − 7 to scale the loss to an acceptable range. 417
Further improvements may come from a more comprehen- 418
sive hyper-parameter optimization study, which we leave as 419
future work. 420

We see in Tab. 1 and Tab. 2 that introducing this pho- 421
tometric loss in FaceFormer2D garners a 1.1% improve- 422
ment for the best LVE and a 2.4% improvement for mean 423
LVE on VOCA-Test. CodeTalker2D on the other hand does 424
not see similar benefits, and performance is even harmed. 425
We hypothesize that this is due to CodeTalker’s use of the 426
additional LMSE(ZΓ1:T

,Zq
Γ1:T

) loss. As this loss is also 427
meant to act as a regularizer, the additional photometric loss 428
over-regularizes the network. Perhaps additional hyper- 429
parameter tuning of αZ and α2D is required in this context 430
to better balance the regularization, and we leave this explo- 431
ration as future work. Nonetheless, FaceFormer2D’s empir- 432
ical results support our hypothesis that the 2D photometric 433
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loss could promote alignment in 2D image space, yielding434
a performance boost.435

4.2. Improved Speaker Embeddings436

Our second experiment involves training our models437
with improved speaker style embeddings introduced in438
Sec. 3.3.2. We experiment with replacing the one-hot439
encodings in both baselines, labeled FaceFormerW2V and440
CodeTalkerW2V. From Tab. 1 and Tab. 2, FaceFormerW2V441
outperforms the state-of-the-art by 6.2% for best LVE and442
6.0% for mean LVE. Similarly, CodeTalkerW2V achieves443
greater performance than baselines, outperforming it by444
2.8% for best LVE and 5.2% for mean LVE. These re-445
sults validate our motivation to expose the model to richer446
speaker representations, yielding better audio mapping to447
3D mesh animation.448

4.3. Joint Training with 3D-MEAD449

In our third experiment, we perform joint training with our450
generated dataset, 3D-MEAD. To focus on the dataset, we451
do not use the 2D photometric loss or improved speaker452
style embeddings and use the baseline models directly. Sim-453
ilarly, we use the 3D-MEAD-Train-8 split to match the454
number of training speakers in VOCASET to avoid a dataset455
imbalance. This results in a larger one-hot encoding of di-456
mension 16 instead of 8.457

We experiment with 3 different models, namely458
FaceFormerJoint (naive), CodeTalkerJoint (naive), and459
CodeTalkerJoint (ours). The naive label comes from naively460
training the baselines on this combined dataset. Inherently,461
the meshes in 3D-MEAD and VOCASET are not aligned462
with each other, and the distribution of face motions will be463
different given the differences in generation (we show ex-464
amples in Appendix B). This misalignment will introduce465
additional ambiguities and confusion in the model that hin-466
ders performance. To alleviate this alignment issue, we con-467
strain CodeTalker to only predict vertex offsets aligned with468
VOCASET by training its stage-1 codebook only on VO-469
CASET and then using the combined dataset to train the470
stage-2 decoder. We denote that model with the ours la-471
bel. We can see from Tab. 3 that our best-performing model472
is CodeTalkerJoint (ours), resulting in a 9.0% improvement473
over the baseline. In contrast, FaceformerJoint (naive) and474
CodeTalkerJoint(naive) achieve −40.6% and −19.9%, re-475
spectively, highlighting how important data-alignment is.476
Importantly, we mention here that CodeTalker’s architec-477
ture enables it to handle this alignment more easily than478
FaceFormer, where additional data post-processing steps479
would need to be made in order for FaceFormer to prop-480
erly take advantage of this additional data. Despite Face-481
Former’s baseline exhibiting great Mean LVE performance482
over CodeTalker, this is a feature it lacks.483

Model Best LVE ↓ % imp.
(×10−5 mm)

FaceFormer 3.194 —
CodeTalker 3.137 —
FaceFormerJoint (naive) 4.410 -40.6%
CodeTalkerJoint (naive) 3.761 -19.9%
CodeTalkerJoint (ours) 2.854 +9.0%

Table 3. Ablation study of joint-training on the VOCA-Test dataset
w.r.t. Best LVE. % improvement is measured based on comparison
with the best baseline model (CodeTalker).

4.4. User Study 484

Model Dataset Realism↑ LipSync↑
CodeTalkerJoint vs. GT VOCA 47.57 50.00

CodeTalkerW2V (VOCA) vs.
CodeTalkerW2V (3D-MEAD) BEAT 53.40 50.00

Table 4. A/B tested user study results on VOCA-Test and BEAT.
We report the percentage of answers where A is preferred over B.

We conduct a qualitative user study similar to [15, 42] 485
to perform two comparative studies: First, to evaluate 486
how well our best model CodeTalkerJoint approximates the 487
ground truth (GT), we compare it on VOCA-Test. Sec- 488
ond, to evaluate the quality of 3D-MEAD, we compare a 489
CodeTalkerW2V model trained only on VOCA-Train against 490
a CodeTalkerW2V model trained only on 3D-MEAD-Train 491
and test both in a zero-shot manner on the BEAT [28] 492
dataset. BEAT is a large-scale audio-to-gesture dataset, but 493
for this work, we only focus on using a subsample of its 494
audio inputs, truncated to ten-second clips. 495

Similar to [42], we adopt A/B tests for each comparison 496
in terms of realistic facial animations and lip sync 2. For 497
both VOCA-Test and BEAT, 32 speech samples are ran- 498
domly selected, and for models with one-hot encodings, 499
each training speaker is evenly distributed among these 32 500
samples, yielding at least 4 speech samples per speaker ID. 501
This ensures a fair comparison of models across speaker 502
IDs. This results in 128 A vs. B pairs (32 samples × 4 503
comparisons) for the first study, and 32 A vs. B pairs for the 504
second. Each pair is judged by at least 3 different partici- 505
pants, and in total, we collect 480 comparisons. 506

We tabulate the percentage of A/B testing in Tab. 4 and 507
show that our CodeTalkerJoint model is in fact equally pre- 508
ferred to the ground truth on lip sync, and only slightly 509
less preferred on realism. This first study justifies that 510

2We found from early focus groups that sometimes, it’s practically im-
possible to select one pair over the other, so a third ”I don’t know” option
is made available.
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Figure 4. A visual comparison of predicate facial animations by different methods on VOCA-Test (left) and a comparison of zero-shot
facial animations on BEAT with CodeTalkerW2V trained on 3D-MEAD or VOCASET (right). The upper grey renders show the keyframes
for different parts-of-speech, while the section below visualizes the temporal statistics (mean and standard deviation) of adjacent-frame
motion variations within a single sequence.

our method of joint training yields high-fidelity animations.511
Similarly, Tab. 4 also shows how a model trained exclu-512
sively on 3D-MEAD is very competitive to one trained on513
VOCA-Train in a zero-shot setting, which highlights the514
quality of our pseudo-generated dataset.515

4.5. On Seeds and LVE516

As seen in Tab. 1 and Tab. 2, while CodeTalker baseline517
exhibits better best-LVE over FaceFormer, FaceFormer has518
better mean-LVE across the three seeds. CodeTalker and519
other models also exhibit quite a large standard deviation520
in results, which opens the door for cherry-picked results in521
the future that could potentially mask the true performance522
of these models. As a result, we argue for a more fair com-523
parison by reporting averaged results across multiple runs524
or seeds, as is commonly done in other AI fields and as was525
done in this work.526

5. Conclusion527

We explored how 2D signals can be used to augment the528
task of 3D speech-driven facial animation. We presented a529
new 2D photometric loss for better mesh regularization and530
alignment in 2D image space, improved speaker style em-531

beddings, and techniques for 3D mesh generation from 2D 532
videos to augment training data, all of which garnered im- 533
provements in their own rights. A limitation of our work lies 534
in the lack of merging of these methods together, which is 535
not a trivial task. As each method introduces new variations 536
in learning and regularization, naively combining them does 537
not yield benefits above those presented in this work, and 538
we leave that exploration as future work. Nonetheless, our 539
independent studies showed great improvements over base- 540
lines and good qualitative comparisons to ground truth. 541
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[36] Justus Thies, Michael Zollhöfer, Marc Stamminger, Chris-704
tian Theobalt, and Matthias Nießner. Face2face: Real-time705
face capture and reenactment of rgb videos, 2020. 2706

[37] Ashish Verma, Nitendra Rajput, and L Venkata Subrama-707
niam. Using viseme based acoustic models for speech driven708
lip synthesis. In 2003 IEEE International Conference on709
Acoustics, Speech, and Signal Processing, 2003. Proceed-710
ings.(ICASSP’03)., volume 5, pages V–720. IEEE, 2003. 2711

[38] Konstantinos Vougioukas, Stavros Petridis, and Maja Pantic.712
Realistic speech-driven facial animation with gans. Interna-713
tional Journal of Computer Vision, 128:1398–1413, 2020. 2714

[39] Kaisiyuan Wang, Qianyi Wu, Linsen Song, Zhuoqian Yang,715
Wayne Wu, Chen Qian, Ran He, Yu Qiao, and Chen Change716
Loy. Mead: A large-scale audio-visual dataset for emotional717
talking-face generation. In ECCV, August 2020. 1, 3718

[40] Suzhen Wang, Lincheng Li, Yu Ding, and Xin Yu. One-shot719
talking face generation from single-speaker audio-visual cor-720
relation learning. In Proceedings of the AAAI Conference on721
Artificial Intelligence, volume 36, pages 2531–2539, 2022. 2722

[41] Erroll Wood, Tadas Baltrusaitis, Charlie Hewitt, Matthew723
Johnson, Jingjing Shen, Nikola Milosavljevic, Daniel Wilde,724
Stephan Garbin, Chirag Raman, Jamie Shotton, Toby Sharp,725
Ivan Stojiljkovic, Tom Cashman, and Julien Valentin. 3d face726
reconstruction with dense landmarks, 2022. 2, 3727

[42] Jinbo Xing, Menghan Xia, Yuechen Zhang, Xiaodong Cun,728
Jue Wang, and Tien-Tsin Wong. Codetalker: Speech-driven729
3d facial animation with discrete motion prior. In IEEE/CVF730
Conference on Computer Vision and Pattern Recognition,731

CVPR 2023, Vancouver, BC, Canada, June 17-24, 2023, 732
pages 12780–12790. IEEE, 2023. 1, 2, 3, 4, 5, 7 733

[43] Haotian Yang, Hao Zhu, Yanru Wang, Mingkai Huang, Qiu 734
Shen, Ruigang Yang, and Xun Cao. Facescape: a large-scale 735
high quality 3d face dataset and detailed riggable 3d face 736
prediction, 2020. 2, 3 737

[44] Peiji Yang, Huawei Wei, Yicheng Zhong, and Zhisheng 738
Wang. Semi-supervised speech-driven 3d facial animation 739
via cross-modal encoding. In Proceedings of the IEEE/CVF 740
International Conference on Computer Vision, pages 21032– 741
21041, 2023. 2, 3 742

[45] Shu-Wen Yang, Po-Han Chi, Yung-Sung Chuang, Cheng- 743
I Jeff Lai, Kushal Lakhotia, Yist Y. Lin, Andy T. Liu, 744
Jiatong Shi, Xuankai Chang, Guan-Ting Lin, Tzu-Hsien 745
Huang, Wei-Cheng Tseng, Ko-tik Lee, Da-Rong Liu, Zili 746
Huang, Shuyan Dong, Shang-Wen Li, Shinji Watanabe, 747
Abdelrahman Mohamed, and Hung-yi Lee. SUPERB: 748
speech processing universal performance benchmark. CoRR, 749
abs/2105.01051, 2021. 4 750

[46] Xiangyu Zhu, Xiaoming Liu, Zhen Lei, and Stan Z. Li. Face 751
alignment in full pose range: A 3d total solution. IEEE 752
Transactions on Pattern Analysis and Machine Intelligence, 753
41(1):78–92, jan 2019. 2 754

[47] Wojciech Zielonka, Timo Bolkart, and Justus Thies. Towards 755
metrical reconstruction of human faces, 2022. 2 756

10



CVPR
#10034

CVPR
#10034

CVPR 2024 Submission #10034. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

A. Hyper-Parameters757

The audio encoder weights are initialized with the pre-758
trained Wav2Vec 2.0 [2] weights. The audio encoder itself759
is a 12-layer transformer encoder with model dimensional-760
ity of 768. A linear project layer sits on top of the audio761
encoder, converting the 768-dimensional audio output to a762
64-dimensional speech representation.763

The vertex encoder and style-embedder are fully-764
connected layers with 64 outputs. The transformer decoder765
is a 1 or 6 layer decoder for FaceFormer or CodeTalker, re-766
spectively. For both CodeTalker and FaceFormer, the biased767
causal and cross-modal multi-headed self-attention are 4-768
headed with dimensionality of 64. A fully-connected layer769
with 15069 or 1024 outputs is used encoder outputs for770
FaceFormer or CodeTalker, respectively. CodeTalker’s out-771
puts map to the codebook, hence the difference output sizes.772

We replicate the experimental settings proposed in Face-773
Former [15], using the Adam [25] optimizer with a learning774
rate η = 1 × 10−4, batch size of 1, and period set to 30.775
Each model is trained for 100 epochs and tested using the776
final weights after 100.777

B. Misalignment in 3D-MEAD778

VOCASET is built using expensive motion capture equip-779
ment that can accurately generate neutral template meshes,780
which in turn are used during training to get the vertex off-781
sets of the animations, which the model learns to predict.782
The issue with 3D-MEAD is that neutral templates do not783
exist, and nor is there video or images from which to gen-784
erate a neutral mesh, so we are left with trying to generate785
neutral template meshes by disentangling the expressions786
from the animated sequences and approximating a neutral787
mesh. This approximate prediction of neutral meshes, gen-788
erated from animated videos, is not perfect, and any inaccu-789
racies in that prediction will trickle down when subtracting790
the template to generate vertex offsets.791

Figure 5 demonstrates the issue well, where parts of the792
mesh appear pinched or raised, particularly around the eye-793
brows. This pinching effect arises from inaccurate neutral794
mesh template predictions that skew the vertex offset pre-795
dictions when trained on 3D-MEAD. Similarly, it is not796
trivial to simply combine these datasets, as this misalign-797
ment will undoubtedly confuse the model, and make it very798
hard for the model to fit to the data well. Fixing this mis-799
alignment between neutral meshes in generated datasets is800
a challenging problem, which we leave as future work.801

Figure 5. The misalignment of 3D-MEAD templates, with Face-
Former trained on 3D-MEAD and zero-shot to VOCASET.
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